A Grassmannian Approach to Zero-Shot Learning for Network Intrusion Detection
نویسندگان
چکیده
One of the main problems in Network Intrusion Detection comes from constant rise of new attacks, so that not enough labeled examples are available for the new classes of attacks. Traditional Machine Learning approaches hardly address such problem. This can be overcome with Zero-Shot Learning, a new approach in the field of Computer Vision, which can be described in two stages: the Attribute Learning and the Inference Stage. The goal of this paper is to propose a new Inference Stage algorithm for Network Intrusion Detection. In order to attain this objective, we firstly put forward an experimental setup for the evaluation of the Zero-Shot Learning in Network Intrusion Detection related tasks. Secondly, a decision tree based algorithm is applied to extract rules for generating the attributes in the AL stage. Finally, using a representation of a Zero-Shot Class as a point in the Grassmann manifold, an explicit formula for the shortest distance between points in that manifold can be used to compute the geodesic distance between the Zero-Shot Classes which represent the new attacks and the Known Classes corresponding to the attack categories. The experimental results in the datasets KDD Cup 99 and NSL-KDD show that our approach with Zero-Shot Learning successfully addresses the Network Intrusion Detection problem.
منابع مشابه
A Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملتولید خودکار الگوهای نفوذ جدید با استفاده از طبقهبندهای تک کلاسی و روشهای یادگیری استقرایی
In this paper, we propose an approach for automatic generation of novel intrusion signatures. This approach can be used in the signature-based Network Intrusion Detection Systems (NIDSs) and for the automation of the process of intrusion detection in these systems. In the proposed approach, first, by using several one-class classifiers, the profile of the normal network traffic is established. ...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کامل